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a b s t r a c t

The identical parallel machine scheduling problem with the objective of minimizing total weighted
completion time is considered in the online setting where jobs arrive over time. An online algorithm is
proposed and is proven to be (2.5–1/2m)-competitive based on the idea of instances reduction. Further
computational experiments show the superiority over other algorithms in the average performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the online setting, parallel machines scheduling problem has
been paid much attention [1–4]. In this work, we consider the
classical online scheduling over identical parallel machines with the
objective of minimizing the total weighted completion time.
Formally, there is a sequence of jobs arriving over time and must
be scheduled on m identical machines without preemption allowed.
Each job Jj is characterized by a release date rj, a processing time pj
and a weight wj. All the information about one job is not revealed
until it is released. Also the total number n of jobs cannot be known
in advance. The goal is to find a schedule that minimizes the total
weighted completion time, ∑wjCj, where Cj is the completion time
of job Jj. The problem can be denoted by Pmjrj; onlinej∑wjCj in terms
of the standard three-field notation for scheduling problems in [5].

An online algorithm is often assessed by its competitive
performance. An algorithm is called ρ-competitive if, for any instance,
the objective function value of the schedule generated from
this algorithm is no worse than ρ times the objective value of
the optimal offline schedule [6].

For the case of m¼1, the problem degenerates into a single
machine problem. For this problem, it is well known that the optimal
deterministic online algorithm is presented with the competitive
ratio of 2 in [7]. For the case of multiple machines, the first
deterministic online algorithm is given by Hall et al. [8]. They design
a ð4þɛÞ -competitive online algorithm, where ɛ is an arbitrarily small
positive constant. The result is improved to a value of 3.28 by using

the technique of shifting releasing times [9]. To the best of our
knowledge, the current best deterministic online algorithm is given
by Correa and Wagner [1]. They propose a 2.618-competitive algo-
rithm based on linear programming relaxation techniques and the
concept of α-point. In a recent study [2], Sitters designs an online

algorithm named by ONLINE(ε) by using the technique of shifting

releasing times. He proves that the competitive ratio of ONLINE(ε) is
not greater than ð1þ1=

ffiffiffiffiffi
m

p Þ2ð3e�2Þ=ð2e�2Þ, which is much greater
than the current best value of 2.618 in [1] for less machine number,
although which tends to 1.79 when the machine number m tends to
infinity. When randomization is allowed, better competitive algo-
rithms have been proposed. Detailed results can be found in [1,10,11].

In this work, we only consider the deterministic setting.
By generalizing the algorithm for the single machine problem in [7],
we propose an online algorithm for Pmjrj; onlinej∑wjCj and prove
that it is (2:5�1=2m)-competitive. The competitive analysis is
based on the idea of instance reduction, which is first introduced
for two semi-online single scheduling problems in [12,13]. In general,
the method is in an attempt to directly search for the worst-case
instance in the instance space. It starts from an arbitrary instance
and modifies the instance such that it possesses the possible
structure of the worst-case one with respect to the given online
algorithm. The modification guarantees that the performance ratio
does not decrease. Eventually, the reduction procedure ends up
with one or several types of relatively simple instances with special
structures. These special structures make it possible to analyze the
performance ratios. Thus an upper bound on the competitive ratio
can be derived.

The remaining sections are organized as follows. In Section 2,
the online algorithm is presented. Its competitive performance is
analyzed in Section 3. Computational experiments are shown in
Section 4. Conclusions and remarks are given in Section 5.
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2. The AD-SWPT online algorithm

It is well known that the delayed shortest weighted processing
time (D-SWPT) rule proposed by Anderson and Potts [7] is an
optimal online algorithm for the single machine problem to
minimize the total weighted completion time. Actually, D-SWPT
can be regarded as a generalization of the delay shortest proces-
sing time rule proposed in [14] for the case of identical weights.

Inspired by the same idea in both [14] and [7], we further
generalize the D-SWPT rule in [7] and construct an online algorithm
for the parallel machine problem. Informally, when there are some
idle machines and unscheduled jobs, we choose the job with the
smallest ratio of the processing time to the weight as the candidate for
processing. We also choose the current time as the comparison
reference to determine whether the selected candidate is immediately
scheduled or not. Differently, we not only consider the candidate as in
the single machine case, but also take all the jobs being processed at
other machines into account. Quantitatively, we compare the current
time with the average remaining processing time over all the
machines to make a decision of processing. We call the proposed rule
the average delayed shortest weighted processing time rule. It is
thereafter abbreviated to AD-SWPT, which is described in detail as
follows with some notations listed in Table 1.

Algorithm AD-SWPT: Whenever there is one idle machine and
some jobs are available, choose a job with the smallest value of the
ratio pj=wj (hereafter we use weighted processing time to refer to
the ratio) among all the arrived and unscheduled jobs. When ties
occur, choose the one with the smallest index. For example, Ji is
chosen. Calculate the total remaining processing time at all the
busy machines at time t. The value can be written as ∑Sj r t p̂jðtÞ
according to the notations in Table 1. Then if

piþ∑Sj r t p̂jðtÞ
m

rt; ð1Þ

we schedule Ji from t at the idle machine; otherwise, wait until the
next time and repeat the whole procedure above.

At the first glance, it can be readily found out that AD-SWPT is
reduced to the D-SWPT rule in [7] for the case of single machine.
Such a reduction implies that AD-SWPT is optimal for the single
machine case. For the case of multiple machines, we will show
that AD-SWPT performs better in the worst case than the best
algorithm in the related literature. The result is given in the
following theorem and will be proved in the next section.

Theorem 1. The competitive ratio of the AD-SWPT algorithm lies in
the interval of ½2;2:5�1=2m� for the online scheduling problem
of Pmjrj; onlinej∑wjCj.

3. Competitive analysis of the AD-SWPT algorithm

Although the AD-SWPT algorithm can be regarded as a direct
and even intuitive extension from D-SWPT in [7] for the single
machine problem, it seems difficult to follow the proof techniques
in [7] to analyze the competitive performance of AD-SWPT. In this
work, we develop a competitive analysis method based on the idea
of instance reduction, which is first introduced for two semi-
online single scheduling problems in [12,13]. Although the com-
petitive ratio is defined as the maximal performance ratio
achieved in the set of all the instances, an exhaustive search is
infeasible since the set includes infinite number of instances.
The idea of instance reduction is in an attempt to reduce the
search space by showing that some instances cannot achieve
greater performance ratios than other instances do. Thus we can
analyze the worst-case performance in smaller sets. The key point
is that the smaller sets are composed of some instances with some
types of special structures, which permit further analysis of
performance ratios.

For the AD-SWPT rule proposed in Section 2, we first show that
the worst-case instances can be achieved among two types of
instance sets. For each instance in the first set, each job is
associated with the same weighted processing time. For each
instance in the other set, there are some jobs with weights tending
to positive infinity. For the two types of instances, we further
prove that their performance ratios are not greater than 2.5–1/2m.

3.1. Structure of the AD-SWPT schedule

The AD-SWPT schedule includes some idle time intervals at
some machines due to the waiting strategy of AD-SWPT. For the
convenience of presentation, let us state that one machine is “idle”
at the time t if the machine remains idle during the interval of
ðt�ɛ; tþɛÞ, and that one machine is “busy” at the time t if it is busy
during the interval of ðt�ɛ; tþɛÞ, where ɛ is an infinitely small
positive number. In order to differentiate the switching time
points between the busy and idle states, we further state that the
time t is a “starting point of busy time” (abbreviated to SPoint) at
one machine if the machine remains idle in ðt�ɛ; tÞ and busy in
ðt; tþɛÞ, and that the time t is an “ending point of busy time”
(EPoint) at one machine if the machine is busy in ðt�ɛ; tÞ and idle
in ðt; tþɛÞ.

Next we show that the worst-case instances can be obtained
among those whose AD-SWPT schedules do not involve a time t
between the earliest SPoint and the latest EPoint over all the
machines such that each machine is idle at t. The reason follows.
Assume that sðIÞ does not possess the aforementioned character-
istic. In other words, there exists a time t between the earliest
SPoint and the latest EPoint when all the machines are idle.
Thus we can split the instance I into two smaller instances that
consist of jobs scheduled before t and after t. Denote the two
instances by I′ and I″. According to the AD-SWPT rule, we can
readily discover that sðI′Þ and sðI″Þ maintain the starting times of
all the jobs same as in sðIÞ , i.e.,
sðIÞ ¼ sðI′ÞþsðI″Þ: ð2Þ
Given any feasible schedule of I, we can construct two feasible
schedules for I′ and I″ by keeping the starting times unchanging.
Since the optimal schedule is the one with the minimal objective
value among all the feasible schedules, it follows that

πðIÞZπðI′ÞþπðI″Þ: ð3Þ
Combining (2) and (3), we can obtain

sðIÞ
πðIÞ r

sðI′ÞþsðI″Þ
πðI′ÞþπðI″Þ rmax

sðI′Þ
πðI′Þ ;

sðI″Þ
πðI″Þ

� �
; ð4Þ

Table 1
Symbols/Notations description.

Notation Description

t the current decision time
p̂ jðtÞa the remaining processing time of job Jj at time t in a feasible schedule

sð�Þ the schedule constructed by AD-SWPT for a given instance. It also
refers to the objective value of the schedule when no confusion
arises

Sj the starting time of job Jj in the online schedule sð�Þ
Cj the completion time of job Jj in the online schedule sð�Þ
πð�Þ the optimal schedule for a given instance. It also refers to the

objective value of the schedule when no confusion arises

a According to its definition, p̂ jðtÞ equals pj if Jj have not started processing until
t, p̂ jðtÞ equals zero if Jj have been completed before or at t, and p̂ jðtÞ equals the
unfinished processing time if Jj is being processed at t.
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i.e., at least one of the two smaller instances can achieve a
performance ratio not less than the original instance I's. Therefore,
from the perspective of worst-case instances, we only need to
focus on those whose AD-SWPT schedules possess the aforemen-
tioned characteristic. Denote any one of these instances by I1.

Assume that jobs are processed in the order of J1; J2;…; Jn in
terms of their starting times in sðI1Þ. We can further partition jobs
into sub-queues such that jobs within each sub-queue are ordered
according to the WSPT rule, with the last job of a sub-queue
having a greater weighted processing time than that of the first job
of the succeeding sub-queue. The processing order of I1 is
illustrated in Fig. 1(a).

3.2. Instance reduction

First let us introduce an important lemma in [13]. The lemma
will be repeatedly utilized in the competitive analysis.

Lemma 2 (Tao et al. [13]). Let f(x) and g(x) be two positive functions
defined on the interval [u,v], furthermore f(x) is convex and g(x) is
concave. Then f ðxÞ=gðxÞ reaches its maximum at either endpoint of
the interval, i.e.,

f ðxÞ
gðxÞ rmax

f ðuÞ
gðuÞ ;

f ðvÞ
gðvÞ

� �
8xA ½u; v�:

It can be shown that the lemma remains valid when the interval is
open at some endpoint on the condition that the limit of f ðxÞ=gðxÞ
exists at the corresponding endpoint.

Next we will develop two lemmas to show that I1 can be
reduced to one of two new instances with the performance ratio

not decreasing. For the two new instances, their AD-SWPT
schedules are with more simple and special sub-queues structures.
In the first instance, each job is associated with the same weighted
processing time. For another instance, each job in the last sub-
queue in its AD-SWPT schedule has the same weighted processing
time with weights tending to infinity. Denote the two instances by
I2 and I3.

Denote by I′1 an intermediate instance whose AD-SWPT sche-
dule satisfies that all the jobs in the last sub-queue have the same
weighted processing time. To simplify the presentation, along with
I1, I2 and I3 mentioned above, we restate these notations in Table 2
with processing sub-queues illustrated in Fig. 1.

Lemma 3. For any instance I1, an intermediate instance I′1 can be
constructed by modifying the weights of jobs in I1, such that

sðI1Þ
πðI1Þ

r sðI′1Þ
πðI′1Þ

: ð5Þ

Proof. As shown in Fig. 1(a), denote the first job in the last sub-
queue in sðI1Þ by Jf. According to the division rule of sub-queues in
Subsection 3.1, all the jobs in the last sub-queue have weighted
processing times not less than pf =wf . Denote the set of all the jobs
of the last sub-queue by Q ′. Then divide Q ′ into two subsets in
terms of the relations between their weighted processing times
and pf =wf :

Q ′
1 ¼ JjjJjAQ ′;

pf
wf

o pj
wj

oþ1
� �

ð6Þ

Fig. 1. Processing sub-queues in terms of starting times in AD-SWPT schedules for I1, I
′
1, I2 and I3.

Table 2
Four types of special instances.

I1: an instance for which there does not exist a time t between the earliest SPoint and the latest EPoint in the AD-SWPT schedule such that all the machines remain
idle at t.

I′1: an instance which not only possesses the same structure as I1 but also satisfies that all the jobs in the last sub-queue in the AD-SWPT schedule have the same
weighted processing time.

I2: an instance which not only possesses the same structure as I1 but also satisfies that each job has the same weighted processing time.
I3: an instance which not only possesses the same structure as I′1 but also satisfies that jobs in the last sub-queue in the AD-SWPT schedule have positive infinite

weights.
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and

Q ′
2 ¼ JjjJjAQ ′;

pj
wj

¼ pf
wf

� �
: ð7Þ

Construct an intermediate instance I′ðδÞ by modifying the
weight wj of each job Jj in Q ′

1 to δwj where δ is a parameter to
be chosen later. Let

δ ¼
min

pj
wj

jJjAQ ′
1

� �
pf =wf

: ð8Þ

For any δA ð0; δ�, this modification does not change the mutual
relations of the weighted processing times among jobs in the last
sub-queue. So jobs are scheduled in the same time intervals as in
sðI1Þ after this modification.
Since sðI′ðδÞÞ maintains the starting times of jobs unchanging

when δ changes in ð0; δ�, sðI′ðδÞÞ must be a monotonously increasing
linear function with respect to δ. It is also a trivial convex function.
Next we will explain how πðI′ðδÞÞ changes with δ. Note that any
feasible schedule for I′ðδÞ remains feasible while δ changes in ð0; δ�.
Furthermore, given a feasible schedule for I′ðδÞ, its objective value is a
monotonously increasing linear function with respect to δ. Since the
optimal schedule is the one with the minimal objective value among
all the feasible schedules, πðI′ðδÞÞ becomes a minimum of multiple
linear functions. It follows that πðI′ðδÞÞ must be a piecewise linear
functionwith respect to δ, with its slope not increasing with δ. It also
implies that πðI′ðδÞÞ is a concave function.
According to Lemma 2 and the convexity and concavity of

sðI′ðδÞÞ and πðI′ðδÞÞ, we have that

sðI′ðδÞÞ
πðI′ðδÞÞ rmax lim

δ-0

sðI′ðδÞÞ
πðI′ðδÞÞ ;

sðI′ðδÞÞ
πðI′ðδÞÞ

( )
: ð9Þ

Two cases exist:

� If the maximum of the right-hand side of (9) is achieved at the
first term, all the jobs in Q ′

1 have weights tending to 0. These
jobs will be processed at the last both in sðI′ðδ-0ÞÞ and
πðI′ðδ-0ÞÞ. They can be deleted since they contribute nothing
to the objective value and have no effect on other jobs.

� If the maximum of the RHS of (9) is achieved at the second
term, i.e., δ is chosen as δ , then there is at least one job
belonging to Q ′

1 whose weighted processing time is modified to
pf =wf according to (8).

For the resulting instances I′ðδ-0Þ or I′ðδÞ in the two cases above,
update Q ′

1 and Q ′
2 according to (6) and (7). If there remain jobs in Q ′

1,
modify their weights by repeating the procedure above. The expected
instance I′1 can be eventually obtained where all the jobs in the last
sub-queue have the same weighted processing time of pf =wf . □

Lemma 4. For any I′1, either an I2 or an I3 can be constructed
by modifying the weights of jobs in I′1, such that

sðI′1Þ
πðI′1Þ

rmax
sðI2Þ
πðI2Þ

;
sðI3Þ
πðI3Þ

� �
: ð10Þ

Proof. Assume that sðI′1Þ is composed of K sub-queues. If K¼1, I′1 is
clearly the expected instance I2 in the lemma. Thus we only need
to consider the case of K41. We will show that an intermediate
instance I′ can be constructed by modifying the weights, such that
either sðI′Þ is composed of K�1 sub-queues, or all the jobs in the
last sub-queue of sðI′Þ have positive infinite weights.
As shown in Fig. 1(b), denote by Jl the last job of the next-to-last

sub-queue in sðI′1Þ. Denote the set of all the jobs of the last sub-
queue by Q ′. All the jobs in Q ′ have the same processing time

according to the definition of I′1, say pf =wf . Then pf =wf is less than
pl=wl according to the division rule of sub-queues in Subsection 3.1.
Construct an intermediate instance I′ðδÞ by modifying the

weight wj of each job Jj in Q ′ to δwj where δ is a parameter to
be chosen later. Let

δ ¼ pf =wf

pl=wl
: ð11Þ

Similar to the analysis in the proof of Lemma 5, we can discover
that sðI′ðδÞÞ is a convex function with respect to δ, and πðI′ðδÞÞ is a
concave function with respect to δ for δA ½δ; þ1Þ. According to
Lemma 2

sðI′ðδÞÞ
πðI′ðδÞÞ rmax

sðI′ðδÞÞ
πðI′ðδÞÞ ; lim

δ-þ1
sðI′ðδÞÞ
πðI′ðδÞÞ

� �
: ð12Þ

Two cases exist:

� The maximum of the RHS of (12) is achieved at the first term,
the weights of all the jobs in Q ′ are modified to pf =wf . So in
sðI′ðδÞÞ these jobs can be combined into the original next-to-
last sub-queue according to the division rule of sub-queues in
Subsection 3.1, i.e. sðI′ðδÞÞ is composed of K�1 sub-queues.

� The maximum of the RHS of (12) is achieved at the second
term, all the jobs in Q ′ have positive infinite weights.
The resulting instance I′ðδ-þ1Þ is just the expected instance
I3 in the lemma.

If the first case occurs and K�1 remains greater than 1, we can
repeatedly carry out the procedure above. Eventually we can
obtain either the expected I2 in the first case or I3 in the second
case. □

3.3. Lower bound on the optimal schedule

Note that we do not need to know what the optimal schedules
look exactly like in the procedure of instance reduction in the
previous subsection. However, an appropriate lower bound on the
optimal schedule has to be established in order to further analyze
the performance ratios of I2 and I3.

First let us introduce the concepts of mean-busy-time and LP
schedule.

Definition 5 (Goemans et al. [15]). Given a preemptive schedule,
the mean-busy-time of a job Jj is defined as

Mj≔
1
pj

Z T

rj
δjðtÞ � t dt; ð13Þ

where T is the schedule horizon, i.e. all the jobs are completed by
T, and δjðtÞ is the indicator function of the processing of job Jj at
time t, i.e., δjðtÞ ¼ 1 when Jj is being processed at time t, otherwise
δjðtÞ ¼ 0.

Definition 6 (Goemans et al. [15]). For any instance of the single
machine problem 1jrj;pmtnj∑wjCj, at any point in time, schedule
the job with the smallest weighted processing time ðpj=wjÞ, then
the resulting preemptive schedule is called LP schedule.

For a non-preemptive schedule, the following relation can be
readily discovered between the mean-busy-time and the completion
time:

Mj ¼ Cj�
pj
2
: ð14Þ

Taking the mean-busy-times of jobs as optimization variables,
Goemans et al. [15] develop a linear programming relaxation for
1jrj;pmtnj∑wjCj and obtain a lower bound for the problem. They
also prove that the relaxation can be optimally solved by the
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LP schedule for the problem. Chou et al. [16] further extend the
lower bound to the parallel machine problem by introducing
a virtual m-times faster single machine problem.

Lemma 7 (Chou et al. [16]). For any instance I ¼ frj; pj;wjg of
Pjrj; pmtnj∑wjCj, let μðIÞ be the optimal objective value. Construct
a single machine instance I′¼ frj; pj=m;wjg (hereafter we refer to it as
the virtual m-times faster single machine problem). Denote the mean-
busy-time of job Jj in the LP schedule of I′ by MLP

j , then

μðIÞZ∑
jA I

wjM
LP
j þ 1

2
∑
jA I

wjpj ð15Þ

Since the preemptive problem is a trivial relaxation of the non-
preemptive problem, the lower bound in Lemma 7 is clearly
applicable to Pjrjj∑wjCj. We further consider the special case
where all the jobs are associated with the same weighted proces-
sing time. For any instance in this case, considering the corre-
sponding virtual m-times faster single machine problem, we can
construct its LP schedule by the FCFS (First Come First Service)
strategy according to Definition 6 because all the jobs have the
same weighted processing time. Along with (14), we can readily
obtain the following corollary.

Corollary 8. For an instance I of Pjrjj∑wjCj with each job having the
same weighted processing time, construct a non-preemptive schedule
according to FCFS for the corresponding virtual m-times faster single
machine problem. Denote the completion time of job Jj in the FCFS
schedule by CFFj , then

πðIÞZ∑
jA I

wjC
FF
j þ 1

2
1� 1

m

� �
∑
jA I

wjpj: ð16Þ

Hereafter we refer to the lower bound in Corollary 8 as the LP
lower bound, and denote it by LBmð�Þ.

3.4. performance analysis of I2 and I3

Based on the LP lower bound, we can analyze the performance
ratios of I2 and I3. In the following analysis, we will repeatedly
handle calculating the total weighted completion time of some
jobs with the same weighted processing time. To simplify the
proof, we first give a compact expression for the calculation, which
can be derived by a direct algebraic simplification.

Statement 9. Let J1; J2;…; Jn be a sequence of jobs with the same
weighted processing time, for example, pj=wj ¼ 1=η for i¼ 1;2;…;n.
Assume that these jobs are continuously processed starting from
time t at a single machine. Then the total weighted completion time

of these jobs can be expressed as

∑
n

j ¼ 1
wjCj ¼ ηt ∑

n

j ¼ 1
pjþ

η
2

∑
n

j ¼ 1
pj

 !2

þ η
2

∑
n

i ¼ 1
p2j ð17Þ

Lemma 10.

sðI2Þ
πðI2Þ

r2:5–1=2m ð18Þ

Proof. It does not change the performance ratio to multiply the
weights of all the jobs by a positive constant. All the jobs in I2 have
the same weighted processing time, we can normalize the ratio of
pj=wj to 1, i.e., wj equals pj.
Consider the latest SPoint in sðI2Þ, and denote it as rL.

The “latest” implies that jobs are continuously processed after rL
at each machine without idle time between jobs. Now we analyze
the performance ratio by two cases.
Case 1: There does not exist a job which is released before rL and

is scheduled at, or after, rL in sðI2Þ. See Fig. 2(a). Consider these jobs
that start processed at, or after, rL. According to the increasing
order of their staring times, denote these jobs by J1; J2;…; Jn.
The assumption in this case implies that these jobs must be
released at, or after, rL. Furthermore, these jobs have no effect on
jobs starting before rL. Construct an intermediate instance I′2 which
includes all the other jobs in I2 except J1; J2;…; Jn. Then we have

sðI2Þ ¼ sðI′2Þþ ∑
n

j ¼ 1
ðSjþpjÞwj: ð19Þ

Jobs are continuously processed after rL at each machine. So we
can limit the starting time of the jth job in fJ1; J2;…; Jng as

SjrrLþ
∑Si o rL p̂iðrLÞþ∑1r io jpi

m
j¼ 1;2;…;n; ð20Þ

where the second term is to average the total processing time
which have to be finished between rL and Sj over all the machines,
and ∑Si o rL p̂iðrLÞ represents the total remaining processing time at
all the machines at time rL. Let ∑Si o rL p̂iðrLÞ≔A, and ∑n

j ¼ 1pj≔B.
Along with (19), we can limit sðI2Þ by an upper bound as

sðI2Þ ¼ sðI′2Þþ ∑
n

j ¼ 1
ðSjþpjÞwj

rsðI′2Þþ ∑
n

j ¼ 1
rLþ

Aþ∑j�1
i ¼ 1pi
m

þpj

 !
pj

sðI2Þ ¼ sðI′2Þþ ∑
n

j ¼ 1
rLþ

A
m

þ ∑j
i ¼ 1pi
m

 !
pjþ 1� 1

m

� �
∑
n

j ¼ 1
p2j ð21Þ

Fig. 2. The AD-SWPT schedule sðI2Þ. (a) Case 1 and (b) case 2.
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sðI2Þ ¼ sðI′2Þþ rLþ
A
m

� �
Bþ B2

2m
þ 1� 1

2m

� �
∑
n

j ¼ 1
p2j : ð22Þ

The second term in (21) can be regarded as the total weighted
completion time of the jobs of J1; J2;…; Jn, which are continuously
processed starting from the time rLþA=m on a single machine,
with the processing time of each job multiplied by a constant of
1/m. So this term can be simplified according to Lemma 9.
Consider the set of fJ1; J2;…; Jng as a separate instance, and

further relax the release times of all the jobs to rL, then we can
develop a lower bound of the optimal schedule πðI2Þ according to
Lemma 8:

πðI2ÞZπðI′2Þþπð J1; J2;…; Jn
� �Þ

ZπðI′2ÞþLBmð J1; J2;…; Jn
� �Þ

¼ πðI′2Þþ ∑
n

j ¼ 1
wjC

FF
j þ 1

2
1� 1

m

� �
∑
jA I

wjpj

¼ πðI′2ÞþrLBþ
B2

2m
þ 1

2
∑
n

j ¼ 1
p2j ; ð23Þ

where CFF
j is the completion time of Jj in the FCFS schedule for the

virtual m-times single machine problem of fJ1; J2;…; Jng. The last
equation is simplified according to Lemma 9.
According to the AD-SWPT rule, we have ∑Sj r rL p̂jðrLÞ=mrrL,

so A=mrrL. Combining (22) and (23), we have

sðI2Þ
πðI2Þ

rmax
sðI′2Þ
πðI′2Þ

;

rLþ
A
m

� �
Bþ B2

2m
þ 1� 1

2m

� �
∑n

j ¼ 1p
2
j

rLBþ
B2

2m
þ1
2
∑n

j ¼ 1p
2
j

8>>><
>>>:

9>>>=
>>>;

rmax
sðI′2Þ
πðI′2Þ

;2

( )
: ð24Þ

Case 2: There exists at least a job Jk which is released before rL
and is scheduled at, or after, rL in sðI2Þ. See Fig. 2(b). According to
the AD-SWPT rule, Jk must satisfy

pkþ∑Sj o rL p̂jðrLÞ
m

ZrL: ð25Þ

Otherwise Jk would be scheduled before rL.
Consider these jobs which are completed after rL. According to

the increasing order of their staring times, denote these jobs by
J1; J2;…; Jn. Construct an intermediate instance I′2 which includes
all the other jobs in I2 except J1; J2;…; Jn.
Divide the set of fJ1; J2;…; Jng into two subsets as follows:

Q1 ¼ fJjjSjorL;Cj4rLg [ fJkg
Q2 ¼ fJjjSjZrLg\fJkg:

Let ∑Jj AQ1
pj≔A, and ∑Jj AQ2

pj≔B. Similar to (20), we have

SjrrLþ
∑1r io jpi

m
j¼ 1;2;…;n: ð26Þ

Then similar to the derivation of (22), we can limit sðI2Þ as

sðI2ÞrsðI′2ÞþrLðAþBÞþ ðAþBÞ2
2m

þ 1� 1
2m

� �
∑

Jj AQ1 [Q2

p2j : ð27Þ

By relaxing the releasing times of jobs in fJ1; J2;…; Jng to 0, similar
to analysis of (23), we can limit πðI2Þ as

πðI2ÞZπðI′2Þþ
ðAþBÞ2
2m

þ 1
2

∑
Jj AQ1 [Q2

p2j : ð28Þ

In addition, we can derive A=mZrL from (25). Furthermore we
can obtain ∑Jj AQ1

p2j ZA2=m because there are at most m jobs in
Q1. Combining these relations with (27) and (28), we can limit the

performance ratio of I2 as
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The next-to-last inequality is obtained by letting B¼0, then
applying ∑Jj AQ1

p2j ZA2=m.
The two cases above show that we can limit the performance

ratio of I2 from above by (2:5�1=2m) or the performance ratio of
an intermediate instance I′2. In sðI′2Þ there are no jobs starting
processed at, or after, rL. In other words, in sðI′2Þ rL is not the latest
SPoint anymore. Rewrite I′2 as I2 and repeat the analysis above.
Ultimately I′2 would become an empty set. It follows that the
performance ratio of I2 can be limited from above by 2.5-1/2m. □

Lemma 11.

sðI3Þ
πðI3Þ

r2:5�1=2m ð30Þ

The proof is similar to that of Lemma 10 and is attached in
Appendix A.
Summarizing the analysis above, we first apply the idea of
instance reduction and show that the worst-case instances can
be achieved among two types of instances by Lemmas 3 and 4.
Then the performance ratios of the two types of instances are
proved less than 2:5�1=2m in Lemmas 10 and 11.

Proof of Theorem 1. Following Lemmas 3, 10 and 11, we can
directly obtain that AD-SWPT is ð2:5�1=2mÞ-competitive. Next we
will construct a special instance to show that the AD-SWPT
algorithm is at most 2-competitive.
Consider an instance I4 with mþ1 jobs whose parameters are

showed in Table 3, where ɛ is an arbitrarily small positive value.
According to the AD-SWPT rule, J1, J2, …, and Jm are assigned to
one of m machines respectively with the starting time of
Sj ¼ jðmþ1Þ=mðmþ jÞ and the same completion time of ðmþ1Þ=m.
Jmþ1 starts at time of ðmþ1Þ=m. It should start at its releasing time
of ðmþ1Þ=2mþɛ in the optimal schedule since it has infinite

Table 3
Instance I4 with mþ1 jobs.

Job characteristics J1 J2 ⋯ Jj ⋯ Jm Jmþ1

rj 0 0 ⋯ 0 ⋯ 0 mþ1
2m

þɛ

pj 1 mþ1
mþ2

⋯ mþ1
mþ j

⋯ mþ1
mþm

0

wj 1 mþ1
2ðmþ2Þ

⋯ mþ1
jðmþ jÞ

⋯ mþ1
mðmþmÞ

w-1
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weight. So we can obtain the performance ratio of the AD-SWPT
on this instance:

sðI4Þ
πðI4Þ

-

mþ1
m

mþ1
2m

þɛ
-2 □ ð31Þ

4. Computational results

In this section, we perform a computational study to investi-
gate the average performance for randomly generated instances.
The proposed AD-SWPT algorithm is compared with the existing
best deterministic online algorithm NAS in [1] and ONLINE(ε) in [2].
We also compare the algorithmwith the DSPT rule proposed in [3]
for the non-weighted case

We generate the instance sets by similar methods in [17,18]. Three
categories of instances are considered in terms of the machine load,
say light load, balanced load and heavy load. We do this by generating
jobs according to a Poisson process with a parameter of arrival rate λ,

which indicates the average released processing time on eachmachine

per unit time [18]. Let λ be 0.5, 1.0, and 3.0 for, respectively, light load,
balanced load and heavy load. For all instances, processing times and
weights are generated uniformly in [1, 100] with rounding off to
integer numbers. We consider different pairs of machine number m
and job number n by lettingmAf2;5;10;20;50;100g and nAfm;2m;

4m;50;100;200;500g. There are totally 37 different pairs of (m,n).
For each pair of (m,n) and each category of machine load, we randomly
generate 1000 instances and calculate the mean of the performance
ratios of all the instance with respect to the online algorithms. Since it
is very hard to calculate the offline optimal schedule, the LP-based
lower bound in [16] is utilized. We first compare AD-SWPT with NAS

and ONLINE(ε). Figs. 3 and 4 show the statistic results in three different
cases of machine load. By setting the weights of all the jobs to 1, we
further compare AD-SWPT with DSPT and show the results in Fig. 5.
From the statistic data, we surprisedly observe that the average
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Fig. 3. The average performance ratio of AD-SWPT vs NAS at different pairs of (m,n)
and three kinds of machine load. (a) Light load, (b) balanced load and (c) heavy load.
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Fig. 4. The average performance ratio of AD-SWPT vs Online (ε) at different pairs
of (m,n) and three kinds of machine load. (a) Light load, (b) balanced load and
(c) heavy load.
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performance ratio of the proposed AD-SWPT algorithm is consistently
less than that of NAS, ONLINE(ε) and DSPT for all pairs of (m,n) and all
cases of machine load.

Sitter [2] proves that the competitive ratio of ONLINE(ε) is not greater
than ð1þ1=

ffiffiffiffiffi
m

p Þ2ð3e�2Þ=ð2e�2Þ. It is not hard to observe that
AD-SWPT is superior to ONLINE(ε) whenmr31 in terms of the proved

competitive performance, and conversely, ONLINE(ε) is superior to
AD-SWPT when m431. However, from the perspective of average
performance, AD-SWPT surprisingly shows consistent superiority to
ONLINE(ε).

5. Conclusions

In this work, we consider the identical parallel machine online
scheduling problem of minimizing the total weighted completion
time. We design an online algorithm named by AD-SWPT and
prove that it is ð2:5�1=2mÞ-competitive. The result not only
includes the algorithm presented in [7] as a special case, but also

defeats the current best deterministic online algorithm presented
in [1]. In the competitive analysis, we introduce an intuitive and
systematic method. The method exploits the possible structure of
the worst-case instance with respect to the given online algorithm.
The basic idea behind is to modify an arbitrary instance such that
it has a worse performance ratio as well as a more special
structure of which we can take advantage to analyze the perfor-
mance ratio. The analysis method is deserved to be extended to
other online algorithms in our further work. In order to investigate
the average performance of the proposed algorithm, we further
compare it with other algorithms and show the superiority.

Appendix A. The Proof of Lemma 11

Proof. Jobs in the last sub-queue of sðI3Þ have the same weighted
processing time with weights tending to infinity. Without loss of
generality, let wj ¼ δpj for these jobs with δ tending to infinity.
In the following calculating of performance ratios, they are all
carried out in the sense of limit when δ tends to infinity, with the
signs of limits omitted.
Denote by Q1 the set including all the jobs in the last sub-queue

of sðI3Þ. Denote by rf the earliest releasing time of jobs in Q1, and
by rL the latest SPoint in sðI3Þ. Next we analyze the performance
ratio of I3 by three cases.
Case 1: rLrrf . Considering the time rf, according to the AD-

SWPT rule, we have

∑Si o rf p̂iðrf Þ
m

rrf : ðA:1Þ

After jobs which start before rf are completed, jobs in Q1 are
continuously processed. Assume that jobs in Q1 start processed in
the order of J1; J2;…; Jn. Let ∑Jj AQ1pj≔B. Similar to the analysis in
Case 1 in the proof of Lemma 10, along with (A.1), we can derive an
upper bound of sðI3Þ as

sðI3Þ ¼Oð1Þþ ∑
n

j ¼ 1
ðSjþpjÞwj

rOð1Þþ ∑
n

j ¼ 1
rf þ

∑Si o rf p̂iðrf Þþ∑j�1
i ¼ 1pi

m
þpj

 !
δpj

rOð1Þþδ 2rf Bþ
B2

2m
þ 1� 1

2m

� �
∑
n

j ¼ 1
p2j

 !
; ðA:2Þ

where O(1) indicates a limited value. By relaxing the releasing
times of jobs in Q1 to rf, we can similarly derive a lower bound of
πðI3Þ as

πðI3ÞZOð1Þþδ rf Bþ
B2

2m
þ 1

2
∑
n

j ¼ 1
p2j

 !
: ðA:3Þ

When δ tends to infinity, the relations above immediately imply

sðI3Þ
πðI3Þ

r2: □ ðA:4Þ

Case 2: rL4rf , furthermore, jobs being processed at rL in sðI3Þ all
belong to Q1. Similar to the proof of Lemma 10, we can construct
an intermediate instance I′3 by deleting some jobs from I3 such that
rL is not the latest SPoint in sðI′3Þ anymore. Furthermore, it holds
that

sðI3Þ
πðI3Þ

rmax
sðI′3Þ
πðI′3Þ

;2:5�1=2m

( )
: ðA:5Þ

Case 3: rL4rf , furthermore, there are one or more jobs which do
not belong to Q1 and are being processed at rL in sðI3Þ. According

(2,n) (5,n) (10,n) (20,n) (50,n) (100,n)
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

 (m,n)

 T
he

 p
er

fo
rm

an
ce

 ra
tio

n=m/2m/4m/50/100/200/500 AD−SWPT
DSPT

(2,n) (5,n) (10,n) (20,n) (50,n) (100,n)
1

1.1

1.2

1.3

1.4

1.5

1.6

 (m,n)

 T
he

 p
er

fo
rm

an
ce

 ra
tio

n=m/2m/4m/50/100/200/500 AD−SWPT
DSPT

(2,n) (5,n) (10,n) (20,n) (50,n) (100,n)
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 (m,n)

 T
he

 p
er

fo
rm

an
ce

 ra
tio

n=m/2m/4m/50/100/200/500 AD−SWPT
DSPT

Fig. 5. The average performance ratio of AD-SWPT vs DSPT at different pairs of (m,n)
and three kinds of machine load. (a) Light load, (b) balanced load and (c) heavy load.
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to the AD-SWPT rule, these jobs must start before rf. We further
analysis the performance ratio in terms of two sub-cases.
Case 3.1: There does not exists a job in Q1 which is released

before rL and is scheduled at, or after, rL in sðI3Þ. This case implies
that jobs starting at, or after, rL are all released at, or after, rL.
Except these jobs, we can construct an intermediate instance I′3,
which includes all the other jobs in I3. Let ∑Sj Z rL pj ¼ B. Similar to
the analysis in Case 1 in the proof of Lemma 10, we can derive

sðI3Þ
πðI3Þ

r
sðI′3Þþδ rLþ

∑Sj o rL pj
m
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Bþ B2

2m
þ 1� 1

2m
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j

 !
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B2
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2
j

 !
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sðI′3Þ
πðI′3Þ

;2

( )
: ðA:6Þ

Case 3.2: There exists at least a job Jk in Q1 which is released
before rL and is scheduled at, or after, rL in sðI3Þ. See Fig. 6. First
consider these jobs which do not belong to Q1 and are being
processed at rL in sðI3Þ. According to the AD-SWPT rule, these jobs
must start processed before rf. Denote the set including these jobs
by Q ′. Let ∑jAQ ′p̂jðrLÞ≔A′. It follows that

A′
m

r
∑jAQ ′p̂jðrf Þ

m
rrf : ðA:7Þ

Since Jk is released before rL and is scheduled at, or after, rL in
sðI3Þ, we have

pkþ∑Sj o rL p̂jðrLÞ
m

ZrL: ðA:8Þ

Consider jobs in Q1 which are completed after rL. Define two
sets as follows:

Q1 ¼ fJjAQ1jSjorL;Cj4rLg [ fJkg
Q2 ¼ fJjAQ1jSjZrLg\fJkg:

Construct an intermediate instance I′3, which includes all the
jobs in I3 except jobs in Q1 and Q2. Let ∑Jj AQ1

≔A, and ∑Jj AQ2
≔B.

Similar to the analysis in Case 2 in the proof of Lemma 10,
considering that jobs in Q1 and Q2 can be continuously processed

after jobs in Q ′ are completed, we can derive an upper bound on
sðI3Þ as

sðI3ÞrsðI′3Þþδ rLþ
A′
m
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ðAþBÞþ ðAþBÞ2
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∑
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p2j

 !
:

ðA:9Þ
By relaxing the releasing times of jobs in Q1 and Q2 to rf, we can
also derive a lower bound on πðI3Þ as

πðI3ÞZπðI′2Þþδ rf ðAþBÞþ ðAþBÞ2
2m

þ ∑
Jj AQ1 [Q2

p2j =2

 !
: ðA:10Þ

Eq. (A.8) implies that ðAþA′Þ=mZrL. Furthermore ∑Jj AQ1
p2j ZA2=m

because there are at mostm jobs in Q1. Combining these relations with
(A.(7), A.9) and (A.10), we have
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The first inequality is derived by applying ðAþA′Þ=mZrL and
A′=mrrf . The last inequality is obtained by relaxing Q2 to an empty
set, then applying ∑Jj AQ1

p2j ZA2=m.
The three cases above show that we can bound the performance

ratio of I3 from above by (2:5�1=2m) or the performance ratio of
an intermediate instance I′3. Furthermore, in sðI′3Þ, rL is not the
latest SPoint anymore. Rewrite I′3 as I3 and repeat the analysis
above. Ultimately the performance ratio of I2 can be bounded from
above by 2:5�1=2m. □
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